प्रश्नपुस्तिका क्रमांक BOOKLET No. 2013

Code: A03

प्रश्नपुस्तिका

A

एकूण प्रश्न :

150

एकूण गुण 🛭

शेवटचा अंक

5300

बेळ: $1\frac{1}{2}$ (दीड) तास

यंत्र अभियांत्रिकी स्वयंचल अभियांत्रिकी/ यंत्र अभियांत्रिकी/स्वयंचल अभियांत्रिकी

सूचना

(1) सदर प्रश्नपुस्तिकेत 150 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

(3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.

परीक्षा-क्रमांक

केंद्राची संकेताक्षरे

(4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करावा. तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

(5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.

(6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.

(7) प्रस्तुत परिक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच "उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील".

विशेष सूचना :

सदर प्रश्नपत्रिका विभाग – 'अ', 'ब', 'क' विभागांमध्ये विभागण्यात आली आहे. त्यापैंकी 'विभाग – अ – Mechanical Engineering – Automobile Engineering' मधील प्रश्न (प्र.क्र. 1-120) हे अनिवार्य आहेत. तर 'विभाग – \overline{a} – Mechanical Engineering' (प्र.क्र. 121-150) किंवा 'विभाग – \overline{a} – Automobile Engineering' (प्र.क्र. 151-180) यापैकी एकाच विभागातील प्रश्न सोडविणे बंधनकारक आहे', याची कृपया उमेदवारांनी नोंद घ्यावी.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82" यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

क्षकांच्या सूचनेविना हे सील उधड़ नये

A03

2

Α

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

PART A (विभाग अ)

MECHANICAL ENGINEERING — AUTOMOBILE ENGINEERING

1. The principal stresses at a point in a two-dimensional stress system are σ_1 , σ_2 and corresponding principal strains are ε_1 , ε_2 . If E and μ denote Young's modulus and Poisson's ratio, then which one of the following is correct?

(1)
$$\sigma_1 = EG$$

(2)
$$\sigma_1 = \frac{E}{1 - \mu^2} [\varepsilon_1 + \mu \varepsilon_2]$$

(3)
$$\sigma_1 = \frac{E}{1 - \mu^2} \left[\varepsilon_1 - \mu \varepsilon_2 \right]$$

(4)
$$\sigma_1 = \mathbf{E} \left[\epsilon_1 - \mu \epsilon_2 \right]$$

2. What is the relationship between the linear elastic properties — Young's modulus (E), rigidity modulus (G) and bulk modulus (K)?

$$(1) \quad \frac{1}{E} = \frac{9}{K} + \frac{3}{G}$$

$$(2) \quad \frac{3}{E} = \frac{9}{K} + \frac{1}{G}$$

$$(3) \quad \frac{9}{E} = \frac{3}{K} + \frac{1}{G}$$

$$(4) \quad \frac{9}{E} = \frac{1}{K} + \frac{3}{G}$$

3. What is the strain energy stored in a body of volume V with stress σ due to gradually applied load?

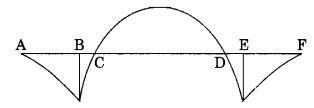
$$(1) \quad \frac{\sigma E}{V}$$

(2)
$$\frac{\sigma E^2}{V}$$

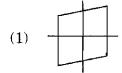
$$(3) \quad \frac{\sigma V^2}{E}$$

$$(4) \quad \frac{\sigma^2 V}{2E}$$

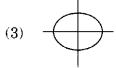
4. In a Mohr's circle, the radius of circle is taken as


$$(1) \quad \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2} + (\tau_{xy})^{2}}$$

(2)
$$\sqrt{\left(\frac{\sigma_x + \sigma_y}{2}\right)^2 + (\tau_{xy})^2}$$


$$(3) \quad \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 - (\tau_{xy})^2}$$

$$(4) \hspace{0.4cm} \sqrt{(\sigma_{_{\scriptstyle X}}-\sigma_{_{\scriptstyle y}})^2 \hspace{0.1cm} + \hspace{0.1cm} (\tau_{_{\scriptstyle xy}})^2}$$


- 5. Which one of the following expresses the total elongation of a bar of length L, with constant cross-section of A and modulus of elasticity E, hanging vertically and subjected to its own weight, W?
 - $(1) \quad \frac{WL}{AE}$
- $(2) \quad \frac{WL}{2AE}$
- $(3) \quad \frac{2WL}{\Delta E}$
- $(4) \quad \frac{WL}{4AE}$
- **6.** The bending moment diagram for an overhanging beam is shown in figure. The points of contraflexure would include

- (1) A and F
- (2) B and E
- (3) C and D
- (4) A and D
- 7. Which of the following represents maximum shear stress theory?

(2)

- (4)
- 8. Given a simply supported beam of length 'L' subjected to uniform varying load whose intensity is zero at left support and 'W' at right support. Then maximum bending moment is equal to
 - $(1) \quad \frac{WL^2}{7\sqrt{3}}$
- $(2) \quad \frac{WL^2}{9\sqrt{3}}$
- $(3) \quad \frac{WL^3}{9\sqrt{3}}$
- $(4) \quad \frac{\mathrm{WL}^2}{2\sqrt{3}}$

- 9. The design of thin cylinder is based on
 - (1) internal pressure

(2) diameter of cylinder

(3) longitudinal stress

- (4) All of these
- 10. The intensity of shear stress at any point in the cross-section of shaft subjected to pure torsion is ______ its distance from the centre.
 - (1) directly proportional to
- (2) not proportional to
- (3) inversely proportional to
- (4) None of the above

SPACE FOR ROUGH WORK

- 11. Equivalent length of column with both ends fixed is equal to
 - (1) Length of column
 - (2) $2 \times length of column$
 - (3) Length of column divided by two
 - (4) None of the above
- 12. The maximum stress intensity at the base of square column of area 'A' and side 'b' subjected to load 'W' at an eccentricity 'e' equals to
 - $(1) \quad \frac{W}{A} \bigg(1 + \frac{2e}{b} \bigg)$

 $(2) \quad \frac{W}{A} \left(1 - \frac{4e}{b} \right)$

 $(3) \quad \frac{W}{A} \bigg(1 \, + \, \frac{6e}{b} \bigg)$

- $(4) \quad \frac{W}{A}\bigg(1+\frac{8e}{b}\bigg)$
- 13. Given a simply supported beam 'L' mm length subjected to central point load 'W' N. Moment of inertia of beam section is 'I' mm⁴ and modulus of elasticity of beam material is 'E' MPa. Maximum deflection in beam is
 - $(1) \quad \frac{WL^2}{16 \text{ El}}$
- $(2) \quad \frac{WL^3}{16 El}$
- $(3) \quad \frac{WL^3}{24 \text{ El}}$
- $(4) \quad \frac{WL^3}{48 \text{ El}}$
- 14. Moment of inertia of triangular section having base 80 mm and height 60 mm about axis passing through CG and parallel to base is
 - (1) $15 \times 10^6 \text{ mm}^4$

(2) $20 \times 10^6 \text{ mm}^4$

(3) $480 \times 10^3 \text{ mm}^4$

- $(4) \quad 1440 \times 10^{3} \ mm^{4}$
- 15. When a body is subjected to a direct stress ' σ ' in one plane and shear stress ' τ ', the maximum normal stress is
 - $(1) \quad \frac{\sigma}{2} + \frac{1}{2}\sqrt{\sigma^2 + 4\tau^2}$

 $(2) \quad \frac{\sigma}{2} - \frac{1}{2}\sqrt{\sigma^2 + 4\tau^2}$

 $(3) \quad \frac{\sigma}{2} \,+\, \frac{1}{2} \sqrt{\sigma^2 - 4\tau^2}$

- $(4) \quad \frac{\sigma}{2} \frac{1}{2}\sqrt{\sigma^2 4\tau^2}$
- 16. Mild steel belongs to the category of
 - (1) No carbon steel

- (2) Low carbon steel
- (3) Medium carbon steel
- (4) High carbon steel

17.	Ato	mic packing	lactor for	race Centre	a Cubic	(FCC) structi	ire is			
	(1)	0.74	(2)	0.52	(3)	0.68	(4)	0.64		
18.	For	successful e	ktrusion,	the metal sh	ould be					
	(1)	Ductile	(2)	Malleable	(3)	Plastic	(4)	Tough		
19.			-	te and cem lever rule is		n transform	ed led	eburite at	room	
	(1)	20·4 and 79	9-6% resp	ectively	(2)	30·4 and 69	-6% resp	ectively		
	(3)	50·4 and 49	9·6% resp	ectively	(4)	40·4 and 59	·6% resp	ectively		
20.	Whi	ich amongst	the follow	ving does <i>not</i>	t represe	nt an oblique	cutting	process ?	1	
	(1)	Milling cut	ter		(2)	Drills				
	(3)	Planer			(4)	Broaching				
21.	mac be 1	A high speed tool steel is used for machining of a workpiece of mild steel. While machining at cutting speed of 30 m/min., the useful tool life of tool steel is found to be 1 hr. What will be the tool life if the same tool is used to cut at a speed of 40 m/min. ? (Assume $n = 0.12$)								
	(1)	5 min.	(2)	5∙75 min.	(3)	6 min.	(4)	5·5 min.		
22.	Whi	Which of the following methods should be used for turning internal tapers only?								
	(1)	Tail stock o	offset		(2)	Taper attack	hment			
	(3)	Form tool			(4)	Compound 1	rest			
23.	Gea	Gearing ratio used for thread cutting on lathe machine is the ratio of								
	(1)	Speed of le	ad screw	to speed of w	orkpiece					
				_	_					

Driven to driver

(2)

(3)

(4)

Speed of workpiece to speed of lead screw

Lead of lead screw threads to lead of screw to be cut

24.	A hollow workpiece of 60 mm outside diameter and 150 mm length is held on a mandrel between centres and turned all over in 4 passes. If the approach length =										
	20 r		el = 12 1	mm, average		-		peed = 30 m/min.,			
	(1)	7.52 min.	(2)	6·27 min.	(3)	2·52 min.	(4)	5·72 min.			
25.	Hor	Horizontal boring machines can be used to									
	(1)	Drill the hol	.es		(2)	Bore the hol	es				
	(3)	Ream the ho	oles		(4)	All of the ab	ove				
26.	In c	rank and slot	ted link	mechanism, t	the forw	ard and retur	n strok	e angles used are			
	(1)	220° and 140	o respe	ctively	(2)	140° and 220	0° respe	ctively			
	(3)	(3) 180° each (4) 200° and 160° respectively									
27.		Feed rate in automatic table feed mechanism used in shaping machine increases with									
	(1)	decrease in	distance	e between the	disc cer	tre and the co	entre of	adjustable pin			
	(2)	(2) increase in diameter of disc									
	(3)	(3) increase in distance between the disc centre and the centre of adjustable pin									
	(4)	(4) decrease in diameter of bull gear									
28.	The	The lapping operation is done to									
	(1)	produce geo	metrica.	lly true surfac	e						
	(2)	correct mine	or imper	fections in sh	ape						
	(3)	secure a fine	e surfac	e finish							
	(4)	All of the ab	ove								
29.	Stra	addle milling i	is used f	for							
	(1)	machining a	flat su	rface at an an	gle						
	(2)	machining t	wo para	ıllel vertical s	urfaces	of a workpiece	simult	aneously			
	(3)	machining r	nultiple	parallel verti	cal surf	aces of a work	piece				
	(4)										
		_		-							

(1) Crinding mathed

Ultrasonic machining (USM) is a kind of

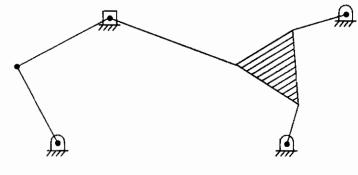
(1) Grinding method

(2) Lapping method

(3) Honing method

(4) Buffing method

SPACE FOR ROUGH WORK


34.

- 35. Chemical machining has the following advantages:
 - I. Low tooling cost
 - II. Parts produced are free from burr
 - III. Hard and brittle materials can be machined
 - IV. Material removal rate is high
 - (1) I, II and III only

(2) II and IV only

(3) I and IV only

- (4) I and II only
- **36.** The degrees of freedom of a five link plane mechanism with five revolute pairs as shown in figure is

- (1) 3
- (2) 4
- (3) 2
- (4) 1
- **37.** Which of the following is the inversion of double slider crank chain?
 - (1) Beam engine
 - (2) Elliptical trammel
 - (3) Watt's indicator mechanism
 - (4) Quick return motion mechanism
- 38. When crank rotates with uniform speed it has
 - (1) only radial acceleration
- (2) only tangential acceleration
- (3) only Coriolis acceleration
- (4) None of the above
- **39.** Which of the following is transmission dynamometer?
 - (1) Rope brake

(2) Electric generator

(3) Prony brake

(4) None of the above

SPACE FOR ROUGH WORK

P.T.O.

SPACE FOR ROUGH WORK

(1) I, II and III

pair.

Which of the statements given above is/are correct?

I only

(2)

III. Oldham's coupling mechanism has two prismatic pairs and two revolute pairs.

II and III

III only

(4)

46.	For two meshing gears, their									
	(1)	number of tee	eth mu	st be same	(2)	addendum m	must be same			
	(3)	dedendum m	ust be	same	(4)	module must	be san	ne		
47.		axis of spin,	the ax	is of precession	n, and	axis of applied	d gyro	scopic torque are		
	(1)	one plane								
	(2)	two planes pe	rpend	icular to each o	ther					
	(3)	three planes	perpen	dicular to one	anothe	r				
	(4)	(4) None of the above								
48.		0				roscopic couple negotiating a co		o wheels and the		
	(1)	(1) increased on inner wheels and decreased on outer wheels								
	(2)	(2) decreased on inner wheels and increased on outer wheels								
	(3)	decreased on	all wh	eels						
	(4)	(4) increased on all wheels								
49.	Who	When a ship travels in a sea, which of the following effects is more dangerous?								
	(1)	Steering	(2)	Pitching	(3)	Rolling	(4)	All of the above		
50.	Vel	Velocity ratio is constant for which of the following?								
	(1)	Chain drives	and ge	ears	(2)	Belt drives				
	(3)	Rope drives			(4)	Belt and rope	drive	S		
51.	The	The throw of cam is the maximum distance of the follower from								
	(1)	Base circle	(2)	Pitch circle	(3)	Prime circle	(4)	Pitch curve		
52.	The	pressure angle	e and t	he base circle i	n a car	n should be				
	(1)	both as big as	s possi	ble						
	(2)	respectively a	as low	as possible and	as big	as possible				
	(3)	respectively a	as big a	as possible and	as low	as possible				
	(4)	both as low a	s possi	ble						
SPAC	E FOR	R ROUGH WORK	(_			P.T.O.		

- **5**3. In case of ships, gyroscopic effect is **not** observed in which of the following motions?
 - Pitching (1)
- (2)Steering
- (3)Yawing
- (4)Rolling
- 54. The spring loaded governors as compared to gravity controlled governors
 - (1) can operate at higher speeds
 - (2)are more compact and smaller in size
 - are capable of being fixed at any inclination (3)
 - All of the above (4)
- In a Hartnell governor, if a spring of lower stiffness is used, then the governor will 55. be
 - (1)isochronous

(2)more sensitive

less sensitive (3)

- None of the above (4)
- Bulk modulus of elasticity 56.
 - is independent of temperature (1)
 - (2)increases with pressure
 - increases with viscosity (3)
 - is independent of pressure and viscosity **(4)**
- **57.** The speed of sound in a fluid is given by the relation
- (1) $c = \frac{S}{\sqrt{P}}$ (2) $c = \sqrt{\gamma R T}$ (3) $c = \beta \sqrt{K T}$ (4) $c = \gamma P$
- The dynamic viscosity of most of the gases with rise in gas temperature 58.
 - **(1)** increases

- increases as \sqrt{T} (2)
- changes inversely as \sqrt{T}
- (4)decreases
- According to power law model, $\mu = m \left| \frac{du}{dy} \right|^{n-1}$. What is the flow behaviour index 'n' 59. for pseudoplastic fluids?
 - $(1) \quad n = 0$
- (2)n = 1
- (3)n < 1
- (4)n > 1

- 60. The depth of oil having specific gravity 0.6 to produce a pressure of 3.6 bar will be
 - (1) 40 cm of oil
- (2) 36 cm of oil
- (3) 50 cm of oil
- (4) 60 cm of oil
- 61. If the pressure difference between the inside and outside of a soap bubble of 3 mm diameter is 16 N/m², then surface tension will be
 - (1) 0·12 N/m

(2) $1.2 \times 10^{-3} \text{ N/m}$

(3) $1\cdot 2$ N/m

(4) $12.0 \times 10^{-3} \text{ N/m}$

- 62. In Laminar flow
 - (1) Experimentation is required for the simplest flow cases
 - (2) Newton's law of viscosity applies
 - (3) The fluid particles move in irregular and haphazard path
 - (4) Viscosity is unimportant
- **63.** A glass bottle filled with liquid will break at the bottom if a stopper is forced into its open end as per
 - (1) Hydrostatic law

(2) Pascal's law

(3) Gravitational law

(4) Bernoulli's law

- **64.** In turbulent flow in pipe
 - (1) Shear stress varies linearly with radius
 - (2) Head loss varies linearly with flow rate
 - (3) Fluid particles move in straight line
 - (4) Reynolds number is less than 1000
- **65.** For laminar flow in a round pipe, the momentum correction factor is
 - $(1) \quad \frac{1}{2}$
- (2) $\frac{1}{3}$
- (3) $\frac{4}{3}$
- (4) $\frac{3}{4}$

- **66.** A flow in which each liquid particle has a definite path and their paths do not cross each other is called
 - (1) Steady flow

(2) Uniform flow

(3) Streamline flow

- (4) Turbulent flow
- 67. For turbulent flow through pipe, pressure drop is a function of
 - (1) Exponential velocity
- (2) Square root of velocity

(3) Cube of velocity

- (4) Square of velocity
- **68.** The pressure inside a soap bubble of 10 mm diameter above atmosphere is
 - (1) 32 Pa
- (2) 16 Pa
- (3) 160 Pa
- (4) 0·32 Pa
- **69.** In case of flow through orifices, the coefficient of velocity at vena contracta is
 - (1) equal to zero

(2) equal to one

(3) greater than one

- (4) less than one
- 70. Continuity equation given below

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

- (1) is valid for steady flow whether the flow is compressible or incompressible
- (2) is not valid for incompressible, unsteady flow
- (3) is valid for incompressible flow whether the flow is steady or unsteady
- (4) is valid for ideal fluid flow only
- 71. From Bernoulli's equation, plot of hydraulic grade line represents the ______ along the flow.
 - (1) sum of pressure and potential energy
 - (2) sum of pressure and kinetic energy
 - (3) sum of potential and kinetic energy
 - (4) sum of potential, pressure and kinetic energy

72.	A venturimeter is preferable to orificemeter because										
	(1)	it is cheaper			(2)	it is more co	onvenier	nt			
	(3)	energy loss is	less		(4)	it is easy to	assemb	le			
73.		ch of the follow e number of sol	_					iquids containing			
	(1)	Rotameter			(2)	Turbine flo	wmeter				
	(3)	Orificemeter			(4)	Elbowmeter	r				
74.		A mercury manometer used for measuring pressure difference indicates $50~\mathrm{cm}$ head of Hg. This pressure difference, in meters of water, will be									
	(1)	0·63 m	(2)	6·3 m	(3)	6·8 m	(4)	0·68 m			
75.	In t	urbine flowmete	er, the	rotor moveme	nt is se	ensed by a					
	(1)	Optical pick-u	p		(2)	Photovoltai	c pick-uj	p			
	(3)	Reluctance pio	k-up		(4)	Piezoelectri	c pick-u	р			
76.	What is a thermodynamic process in which specific volume remains constant called?										
	(1)	Isometric	(2)	Isothermal	(3)	Isobaric	(4)	ISO 9000			
77.	In a	In a multistage compressor, intercooling is done to									
	(1)	maximise com	press	or work							
	(2)	minimise com	presso	or work							
	(3)	maximise com	press	or temperature	•						
	(4)	(4) maximise power consumption									
78.		bodies are in the bodies are not		-		h have the s	ame tem	perature reading			
	(1)	First law of th	ermo	lynamics							
	(2)	Zeroth law of	therm	odynamics							
	(3)	Second law of	therm	odynamics							
	(4)	Third law of th	nermo	dynamics							
SPAC	E FOR	ROUGH WORK				_		P.T.O.			

16

Α

A03

86.	A cycle in which heat addition and heat rejection is at constant volume and expansion and compression is isentropic is called									
	(1)	Otto cycle	(2)	Diesel cycle						
	(3)	Dual cycle	(4)	Carnot cycle						
87.		ycle where expansion a ection is at constant volum	-	is isothermal and heat addition and						
	(1)	Ericsson cycle	(2)	Carnot cycle						
_	(3)	Stirling cycle	(4)	Diesel cycle						
88.	We	can increase the efficienc	y of Rankine cycl	e by						
	(1)	lowering condenser pres	ssure							
	(2)	(2) superheating steam to high temperature								
	(3)	increasing boiler pressu	re							
	(4)	All the above								
89.		Production of more than one useful form of energy from the same energy source is called								
	(1)	Cogeneration	(2)	Coordination						
	(3)	Corporation	(4)	Co-operation						
90.	Power cycle which is actually a combination of two cycles, one in high temperature region and the other in low temperature region is called									
	(1)	Dual cycle	(2)	Duplicate cycle						
	(3)	Twin cycle	(4)	Binary cycle						
91.		fraction of heat input to formance of engine and is		to net work output is a measure of						
	(1) Mechanical efficiency		(2)	Kinematic efficiency						
	(3)	Thermal efficiency	(4)	Simple efficiency						
SPAC	E FOF	ROUGH WORK		P.T.O.						

92.	Heat is transferred to a heat engine from a furnace at a rate of 80 MW. If the rate of waste heat rejection to a nearby river is 50 MW, what is the net power output?										
	(1)	130 MW	(2)	1.6 MW	(3)	16 MW	(4)	30	MW		
93.		is impossible ervoir and pro	-		-	-					
	(1)	Clausis			(2)	Kelvin – Pl	ank				
	(3)	Rankine			(4)	Carnot					
94.	Fric	tionless pend	ulum is	an example	of						
	(1)	Irreversible	process		(2)	Reversible	process				
	(3)	3) Internal combustion engine (4) Heat engine									
95.		"The efficiency of an irreversible heat engine is always less than the efficiency of a reversible engine operating between the same two reservoirs." This is called									
	(1) Carnot principle				(2)	Rankine pr	inciple				
	(3)	(3) Otto principle (4) Dual principle									
96.	A fr	A fricionless heat engine can be 100% efficient only if its exhaust temperature is									
	(1)	equal to its	input te	mperature	(2)	less than it	s input	tempe	erature		
	(3)	0°C			(4)	$0^{\rm o}{ m K}$					
97.	In a	In a four-stroke cycle in S.I. engines the cam shaft runs									
	(1)	at the same	speed a	s crank shaf	t						
	(2)	at half the s	speed of	crank shaft							
	(3)	at twice the	speed o	of crank shaft							
	(4)	at any spee	d irresp	ective of cran	k shaft s	peed					
98.	Gud	dgeon pin form	ns the li	nk between							
	(1)	piston and	oig end	of connecting	rod						
	(2)	piston and	small en	d of connecti	ng rod						
	(3)	connecting	rod and	crank							
	(4)	big end and small end									

^				•	J				700		
99.	For	same compress	ion ra	tio, thermal ef	ficiency	of Otto cycle	is				
	(1)	greater than t	hat of	Diesel cycle							
	(2)	less than that	of Die	esel cycle							
	(3) same as that of Diesel cycle										
_	(4)	cannot be pre	dicted								
100.	Pre-ignition in an engine may be detected by										
	(1)	increase in sp	eed		(2)	sudden loss	of powe	r			
	(3)	typical sound			(4)	exhaust col	ouration				
101.	The	The knocking tendency in C.I. engines for a given fuel will be									
	(1)	(1) enhanced by decreasing compression ratio									
	(2)	(2) enhanced by increasing compression ratio									
	(3)	(3) unaffected by change in compression ratio									
	(4)	None of these					_				
102.	Ignition coil is used to										
	(1)	step up curre	nt		(2)	step down o	urrent				
	(3)	step up voltag	ge		(4)	step up pow	er				
103.	Insulating material generally used in spark plug is										
	(1)	wood	(2)	bakelite	(3)	polymer	(4)	porcelain			
104.	For	CI engines, wh	at are	the most pref	erred fu	els?					
	(1)	Naphthenes	(2)	Paraffins	(3)	Olefins	(4)	Aromatics			
105.	Det	ergents are oil a	additiv	es used to							

(1) reduce viscosity

(2)

(4)

increase fire point

prevent foaming

SPACE FOR ROUGH WORK

(3)

In p-n type semi-conductor material, holes are

minority charge carriers

majority charge carriers

113.

(2)

(4)

donor atoms

acceptor atoms

114.	Breakdown of a P-N diode may occur due to										
	(1)	Thermal instability		(2)	Tunneling	effect					
	(3)	Avalanche multiplic	ation	(4)	All the abo	ove					
115.	In i	deal inverting amplifi	er, the volta	ge gain							
	(1)	can be adjusted as g	reater than	one only							
	(2)	can be adjusted as l	ess than one	only							
	(3)	can be adjusted as e	qual to one	only							
	(4)	(4) can be adjusted as greater than, equal to or less than one									
116.	For	For any amplifier, the gain-bandwidth product is always									
	(1)	Gain × Bandwidth =	: Constant	(2)	Gain / Bar	ndwidth = Constant					
	(3)	(3) Bandwidth / Gain = Constant (4) None of the above									
117.	The	BJT transistor can b	e connected	in a circu	it in the foll	owing configuration :					
	(1)	(1) Common base configuration									
	(2)	2) Common emitter configuration									
	(3)	Common collector configuration									
	(4)	All the above									
118.	Entire functioning of microprocessor is controlled by the										
	(1)	Arithmetic logic uni	t	(2)	General p	urpose registers					
	(3)	Control unit		(4)	Periphera	ls interfaced					
119.	If a UJT has an internal resistance 2 k ohm at rB ₁ and 1 k ohm at rB ₂ , what is its intrinsic stand-off ratio?										
	(1)	0.67 (2)	0.33	(3)	0.5	(4) 0.75					
120.	An	identical OP-AMP is s	supposed to	 have							
	(1)	Infinite input imped	lance	(2)	Zero outpu	ıt impedance					
	(3)	Infinite bandwidth		(4)	All the abo	ove					
SPAC	E FOF	R ROUGH WORK				P.T	.O.				

PART B (विभाग ब) MECHANICAL ENGINEERING

121.	Multistage centrifugal pumps are used									
	(1)	to produce high head	(2)	to give high discharge						
	(3)	(1) and (2) above together	(4)	to pump viscous liquid						
122.	Spe	cific speed of an impulse turbine ma	inly de	pends on						
	(1)	Jet ratio	(2)	Number of buckets						
	(3)	Jet velocity	(4)	Head						
123.	A K	aplan turbine is a								
	(1)	high head, mixed flow turbine								
	(2)	(2) impulse turbine, inward flow								
	(3)	3) reaction turbine, outward flow								
	(4)	(4) low head, axial flow turbine								
124.	For operating point of pump, a system characteristic between the head required 'H' and the discharge to be maintained 'Q' is generally expressed as									
	(1)	Linear equation	(2)	Parabolic equation						
	(3)	Exponential equation	(4)	Cubic equation						
125.	The	The dimensionless specific speed ' N_s ' of a centrifugal pump is given by the relation								
	(1)	$\frac{N\sqrt{P}}{H^{3/4}} \tag{2} \qquad \frac{N\sqrt{Q}}{H^{5/4}}$	(3)	$\frac{N\sqrt{Q}}{(2H)^{3/4}}$ (4) $\frac{N\sqrt{Q}}{H^{3/4}}$						
126.	Effe	ect of slip in case of centrifugal pump	will							
	(1)	reduce the flow rate	(2)	reduce the speed						
	(3)	reduce the energy transfer	(4)	increase cavitation						
127.	Whi	ich of the following components of rec	ciproca	ating pump is made of cast iron ?						
	(1)	Cylinder (2) Air yessel	(3)	Foot valve (4) Shaft						

128.	The theoretical torque delivered by the hydraulic motor depends on									
	(1)	Pressure only								
	(2)	Pressure and Volumetric displacement								
	(3)	Volumetric displacement only								
	(4)	Pressure and Flow rate								
129.	The	function of hydraulic accumulator is								
	(1)	to store kinetic energy of the working fluid								
	(2)	to store potential energy of the working fluid								
	(3)	(3) to store pressure energy of the working fluid								
	(4)	All the above								
130.		type of valves are used in hydraulic power steering systems of								
	auto	automobiles.								
	(1)) Pressure compensated								
	(2)	2) Non pressure compensated								
	(3)	Proportional control								
	(4)	Mechanical servo								
131.		The relation between coefficient of performance (COP) of refrigerator and heat pump working between the same temperature limits will be								
	(1)	$COP_{HP} = COP_{ref} + 1$ (2) $COP_{ref} = COP_{HP} + 1$								
	(3)	COP_{HP} is lower than COP_{ref} (4) unpredictable								
132.	Hea	at transfer in refrigeration system is controlled by								
	(1)	Zeroth law of thermodynamics								
	(2)	First law of thermodynamics								
	(3)	Second law of thermodynamics								

(4) All the laws of thermodynamics

133.	Vapour compression refrigeration system uses throttling device instead of expansion turbine due to									
	(1)	thermodynamic gain in performance	ce							
	(2)	better utilization of heat exchange	r							
	(3) large cost reduction in expansion device									
	(4)	saving in quantity of refrigerant								
134.		al refrigerant – absorbent combination	on in v	vapour absorption refrigeration system						
	(1)	(1) low specific heat and low viscosity								
	(2) high solubility at generator condition									
	(3)	(3) high solubility at absorber condition								
	(4)	(4) low cost								
135.	CO_2	CO ₂ , CFCs and Chlorine belong to a category of chemicals known as green house								
	gase	gases. Excess presence of these gases in the atmosphere leads to								
	(1)	global warming	(2)	heavy rains						
	(3)	protecting ozone layer	(4)	loss of soil fertility						
136.	Whi	Which of the following properties is not shown on psychrometric chart?								
	(1)	Dry bulb temperature	(2)	Wet bulb temperature						
	(3)	Dew point temperature	(4)	Partial vapour pressure						
137.	Whi	ich is a secondary refrigerant?								
	(1)	Ammonia	(2)	R-134a						
	(3)	Ethylene glycol	(4)	R-744						
00.40		DOUGH WORK								

138.	For 'Infiltration' and 'Ventilation' terms in air-conditioning, which is a false statement?									
	(1)	Both are putting cooling/heat	ing load on	plant						
	(2)	Ventilation is deliberately unwanted way	provided,	however infiltration occurs in an						
	(3) Ventilation can be made zero									
	(4)	Infiltration air quantity reduc	ces ventilati	ion air quantity						
139.	Wh	ich one of the following is not a	n applicatio	on of air-conditioning?						
	(1)	Cold storage	(2)	Operation theater						
	(3)	Heating cycle of shopping mall								
140.		The index, which correlates combined effects of air temperature, relative humidity and air velocity on human body is known as								
	(1)	Mean radiant temperature	(2)	Effective temperature						
	(3)	Dew point temperature	(4)	Wet bulb temperature						
141.	A sine bar is specified by									
	(1)	its total length								
	(2)	the centre distance between t	wo rollers							
	(3)	the size of rollers								
	(4)	(4) the distance between roller and upper surface								
142.	Hen	ary Ford is noted for his contrib	ution to							
	(1)	Statistical quality control	(2)	Time and motion studies						
	(3)	Assembly line operations	(4)	Scientific management						
143.	Tole	erances are specified								
	(1)	to obtain desired fits								
	(2)	because it is not possible to m	anufacture	a size exactly						
	(3)	to obtain high accuracy								

 $(4)\quad to\ have\ proper\ allowance$

144. Match the following types of layout generally employed for the manufacture of	of items
--	----------

A. Product layout

- I. Construction of ship
- B. Process oriented layout
- II. Launch of satellite
- C. Fixed position layout
- III. Refining of crude oil
- D. Unit product layout
- IV. Assembly of automobile
- - Α В \mathbf{C} D
- (1) Ι
- II
- III
- (2)IV

IV

- IIIIII
- II

Ι

Π

IV

I

(4) II

(3)

- Ι
- ΓV Ш
- 145. The basic purpose of multiple activity chart is to
 - **(1)** organise team of operatives on mass production work
 - **(2)** record activities of hands in relation to one another
 - (3)record the timing of each activity
 - **(4)** design the equipments
- 146. Job design means assigning the following tasks of a job to be performed by a worker in his daily routine:
 - I. Job enlargement is the horizontal loading of workers' job.
 - II. Job rotation is interchanging amongst workers after a suitable interval of time.
 - III. Job enrichment means giving additional responsibilities to workers who are more dignified.

Which of the statements given above are correct?

(1) I and II only

II and III only (2)

(3) I and III only (4)I, II and III

٠.												
147.	othe	is the probability of a defective batch being accepted which is otherwise being rejected.										
	(1)	Purch	aser's ris	sk								
	(2)	Acceptable quality level										
	(3)	Producer's risk										
	(4)	Consu	ımer's ris	sk as we	ll as pro	ducer's	s ris	k				
148.	The	re are t	wo basic	types of	control	charts	· :					
	I.	I. When the method of inspection is by variables, the most popular control charts are \overline{X} and R charts.										
	II.	II. When the method of inspection is by attributes, the most popular control chart is P-charts.										
	Whi	Which of the above statements is/are true?										
	(1)	I only		(2) I	only		(3)	I and II	(4)	Neithe	r I nor II	
149.	Pro	cess cap	ability is	s indepe	ndent of			_				
	(1)	toolin	g				(2)	operator skil	1			
	(3)	condit	tion of m	achine			(4)	specification	s of a jo	b		
150.	Mat	ch the	following	;:				-				
	A.	Micro	meter]	I.	Mea	asurement of a	ngle			
	B.	Sine b	oar]	II.	Measurement of surface roughness				38	
	C.	Profil	ometer]	III.	Measurement of diameter of cylinder				der	
	D. Vernier callipers]	IV.	Measurement of length of bar					
		A	В	C	D							
	(1)	I	II	III	IV							
	(2)	III	I	II	IV							
	(3)	III	I	IV	II							
	(4)	IV	III	II	I							
								_				

PART C (विभाग क) AUTOMOBILE ENGINEERING

191.	Sus	pension syst	em on ire	ont wneels in	modern	cars is of						
	(1)	rigid-axle	type		(2)	leaf spring ty	pe					
	(3)	independe	nt suspen	sion type	(4)	All of the abo	ve					
152.	In n	nost of the v	ehicles, tl	ne front track	as comp	pared to the rea	ar trac	k is				
	(1)	less	(2)	more	(3)	equal	(4)	All of the above				
153.	The	automatic t	ransmiss	ion requires	use of the	e following con	trol pe	dals:				
	(1) acceleration and clutch pedals											
	(2)	(2) clutch and brake pedals										
	(3)	(3) acceleration and brake pedals										
	(4) clutch, brake and acceleration pedals											
154.	The oldest braking system used on any automobile is											
	(1)	(1) mechanical braking on front wheels only										
	(2)	(2) engine exhaust braking system										
	(3)	3) vacuum pump controlled braking system										
	(4)	Girling bra	aking syst	tem								
155.	The most suitable material for a brake drum is											
	(1)	(1) cast aluminium having cast iron bonded fins										
	(2)	2) cast iron										
	(3)	(3) cast iron having aluminium bonded fins										
	(4)	aluminiun	า									
156.	One purpose of a recirculating ball type steering gear is to reduce the											
	(1)	operating	friction		(2)	operating cos	t					
	(3)	toe-out du	ring turns	3	(4)	number of pa	rts					
157.	What does the brake bleeding process remove from the system?											
	(1)	Air	(2)	Vacuum	(3)	Excess fluid	(4)	Excess pressure				
CDAC	E EO	POLICH WO	NDV									

158. Three basic types of springs used in automotive suspension systems								are			
	(1)	coil, leaf and	l torsion	bar	(2)	coil, torsion bar and air					
	(3)	leaf, air and	gas		(4)	All of the above					
159.	The frame may get distorted to a parallelogram shape due to										
	(1)	weight of ve	hicle		(2)	weight of	passenger	s			
	(3)	cornering fo	rce		(4)	wheel imp	pact with r	oad obsta	cle		
160.	To resist bending, the best cross-section for a longitudinal member will be										
	(1)	I-section			(2)	channel section					
	(3)	angle section	n		(4)	tubular se	ection				
161.	The percentage of the energy in the petrol burnt in the engine which is actually utilized in propelling the car is as little as										
	(1)	25%	(2)	60%	(3)	35%	(4)	15%			
162.	Air resistance to a car at 20 km/hr is R. What would the air resistance at 60 be?								0 km/hr		
	(1)	R	(2)	2R	(3)	9R	(4)	\mathbb{R}^2			
163.	Spark plug may be fouled by										
	(1)	Petrol	(2)	Oil	(3)	Lead	(4)	All of th	e above		
164.	At normal room temperature, the relative density of an electrolyte in a lead acid battery should be										
	(1)	13.6	(2)	12.6	(3)	1.28	(4)	0.128			
165.	A high rate discharge tester										
	(1) should always be used to test a flat battery										
	(2) should be used only if the battery is at least 70% charged										
	(3) can only be used on nickel alkaline cells										
	(4)	(4) determines the watt-hour capacity of a battery									
166.	The	violent sound	l pulsati	ons with	in the cylino	ler of an I.C	. engine a	re due to			
	(1)	detonation			(2)	turbulenc	e				
	(3)	pre-ignition			(4)	None of t	he above				
SPAC	E FOF	ROUGH WOR	RK						P.T.O.		

30

Α

A03

174.	As per CMVR 1989, the type approval of CNG kit for "Retrofitment" shall be valid for years from the date of such approval and shall be renewable for years.											
	(1)				(2)	3, 3						
	(3)	5, 3			(4)	None of the	above					
175.	Road tax paid on a vehicle in Maharashtra State is											
	(1)	valid througho	ut In	dia								
	(2) valid in Maharashtra only											
	(3) valid in neighbouring states only											
	(4)	invalid throug	hout 1	India								
176.	As per the CMVR, the speed governor of every transport vehicle shall be so set that the vehicle is incapable of being driven at a speed in excess of the maximum presessed of the vehicle except											
	(1)	while maneuve	ering	or cruising	(2)	up an inclir	ne					
	(3)	down an inclin	e		(4)	None of the	above					
177.	The Bombay Motor Vehicles Tax Act 1958 came in force on											
	(1)	1 st April 1958			(2)	1 st January	1958					
	(3)	1 st June 1958			(4)	1 st August	1958					
178.	Electric fans of inches sweep adjustable, at least in number, suitably spaced in the passenger compartment and controlled by switches located near the seat in case of tourist vehicles, is as per CMVR 1989.											
	(1)	7, 7	(2)	8, 8	(3)	9, 9	(4)	10, 10				
179.	sche	ich of the follo eme for paymen cedure for maki	tofo	compensation	in "hit	and run" ac	cident ca	ses detaili	ng the			
	(1)	146	(2)	147	(3)	163	(4)	213				
180.	According to Solatium Fund of Motor Vehicles Act, compensation to the victims of a hit and run motor accident for grevious injuries is											
	(1)	₹ 50,000	(2)	_	(3)		(4)	₹ 5,000				

सूचना - (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

- प्र. क्र. 201. The Catch varies inversely with the size of the
 - (1) nozzle
- (2) droplet
- (3) obstruction
- (4) sprayer

ह्या प्रश्नाचे योग्य उत्तर "(3) obstruction" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. **201** समोरील उत्तर-क्रमांक "(3)" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्र.क. 201.

- 1 2
- (4)

अशः पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वंतत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK